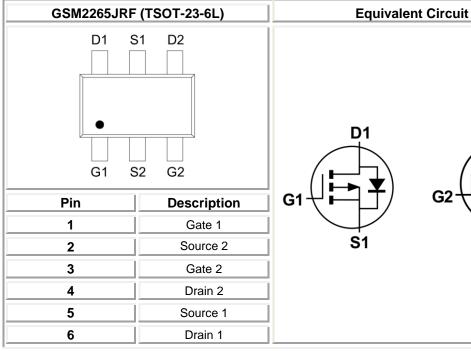
GSM2265JRF

20V Dual P-Channel Enhancement Mode MOSFET

Product Description

The P-Channel enhancement mode power field effect transistor is using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode.

This device is well suited for high efficiency fast switching applications.


Features

- $R_{DS(ON)}=65m\Omega@V_{GS}=-4.5V$
- $R_{DS(ON)}=85m\Omega@V_{GS}=-2.5V$
- $R_{DS(ON)}=130m\Omega@V_{GS}=-1.8V$
- Improved dv/dt capability
- Fast switching
- Suit for -1.8V Gate Drive Applications
- TSOT-23-6L package design

Applications

- Notebook
- Load Switch
- Hand-held Instruments

Packages & Pin Assignments

Ordering and Marking Information

Ordering Information				
Part Number	Package Part Marking Quantity		Quantity / Reel	
GSM2265JRF	TSOT-23-6L	P1	3,000 PCS	
GSM2265 1 2 - Product Code: GSM2265	luct Code: - Package Code: - Green Level:			
	Marking In	formation		
P1	- Product Cod P1 - GS Code: □□	e:		

Absolute Maximum Ratings

T_A=25°C, unless otherwise specified

Symbol	Parameter		Value	Unit
V _{DSS}	Drain-Source Voltage		-20	V
Vgss	Gate-Source Voltage		±12	V
	Continuous Busin Comment	T _A =25°C	-3.7	A
lσ	Continuous Drain Current	T _A =70°C	-2.9	
Ірм	Pulsed Drain Current ¹		-14	Α
_	Total Power Dissipation	T _A =25°C	1.25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
PD		T _A =70°C	0.8	W
TJ	Operating Junction Temperature Range		-55 to +150	°C
Tstg	Storage Temperature Range		-55 to +150	°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient		100	°C/W

Note

1. Repetitive Rating: Pulsed width limited by maximum junction temperature.

Electrical Characteristics

T_A=25°C, unless otherwise specified

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	Static 6	characteristics				
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250µA	-20	-	-	V
$V_{GS(th)}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250µA	-0.4	-	-0.9	V
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =±12V	-	-	±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-20V, V _{GS} =0V	-	-	-1	μΑ
	Drain-Source On-Resistance	V _{GS} =-4.5V, I _D =-4.5A	-	52	65	
R _{DS(ON)}		V _{GS} =-2.5V, I _D =-3A	-	72	85	mΩ
		V _{GS} =-1.8V, I _D =-1.5A	-	100	130	
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-4.5A	-	11	-	S
V_{SD}	Diode Forward Voltage	V _{GS} =0V, I _S =-1A		-0.8	-1.2	V
	Dynami	c characteristics				
Ciss	Input Capacitance		-	515	-	pF
Coss	Output Capacitance	V _{DS} =-10V, V _{GS} =0V, f=1MHz	-	55	-	
Crss	Reverse Transfer Capacitance	1-11/11/12	-	20	-	
Q_g	Total Gate Charge ^{2,3}		-	6.4	-	
Qgs	Gate-Source Charge ^{2,3}	V _{DS} =-10V, V _{GS} =-4.5V, I _D =-3A	-	0.9	-	nC
Q _{gd}	Gate-Drain Charge ^{2,3}		-	1.6	-	
t _{d(on)}	Turn-On Delay Time ^{2,3}		-	5	-	
tr	Turn-On Rise Time ^{2,3}	V _{DD} =-10V, I _D =-1A,	-	17.4	-	
t _{d(off)}	Turn-Off Delay Time ^{2,3}	V_{GS} =-4.5V, R_{G} =25 Ω	-	40.7	-	ns
t _f	Turn-Off Fall Time ^{2,3}		-	11.4	-	

Note:

- 2. The data tested by pulsed, pulse width \leq 300us, duty cycle \leq 2%.
- 3. Essentially independent of operating temperature.

Typical Performance Characteristics

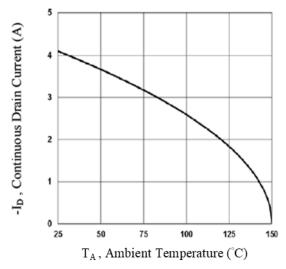


Fig.1 Continuous Drain Current vs T_{A}

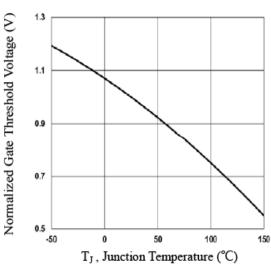


Fig.3 Normalized $V_{\text{GS(th)}}$ vs T_J

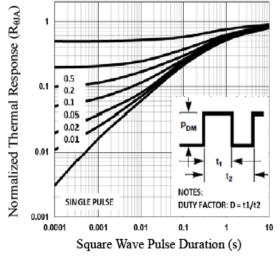


Fig.5 Normalized Transient Impedance

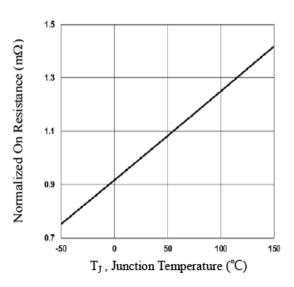


Fig.2 Normalized $R_{\text{DS}(\text{ON})} \, \text{vs} \, T_{\text{J}}$

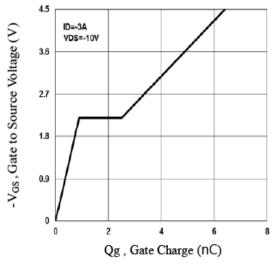


Fig.4 Gate Charge

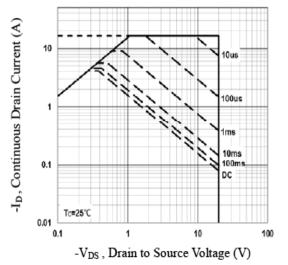
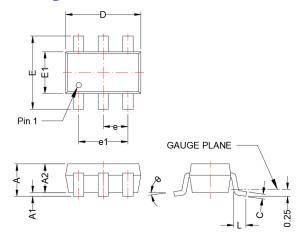
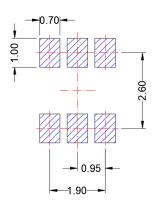



Fig.8 Maximum Safe Operating Area



TSOT-23-6L

Package Dimension

Recommended Land Pattern

	Dimensions				
0	Millimeters		Inches		
Symbol	MIN	MAX	MIN	MAX	
Α	-	1.10	-	0.043	
A 1	0.00	0.10	0.000	0.004	
A2	0.70	1.00	0.028	0.039	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.70	3.10	0.106	0.122	
E	2.20	3.00	0.087	0.118	
E1	1.30	1.75	0.051	0.069	
е	0.95 BSC		0.037 BSC		
e1	1.90 BSC		0.075 BSC		
L	0.3	0.6	0.012	0.024	
θ	0°	8°	0°	8°	

NOTE:

Dimensions are exclusive of Burrs, Mold Flash & Tie Bar extrusions.

NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The information furnished is believed to be accurate and reliable. However, Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

CONTACT US

GS Headquarter		
\(\cdot\)	4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C)	
E	886-2-2657-9980	
	886-2-2657-3630	
@	sales_twn@gs-power.com	

RD Division		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	824 Bolton Drive Milpitas. CA. 95035	
E	1-408-457-0587	

