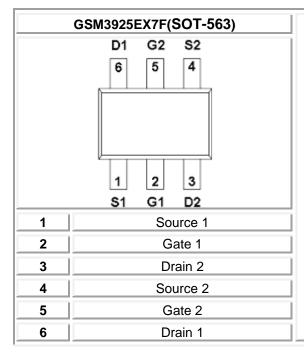
# **GSM3925EX7F**

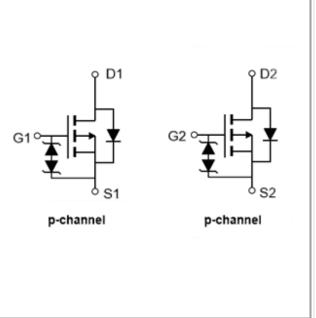
# 30V P-Channel Enhancement Mode MOSFET

#### **Product Description**

GSM3925EX7F, P-Channel enhancement mode MOSFET, uses Advanced Trench Technology to provide excellent  $R_{\text{DS(ON)}}$ , low gate charge.

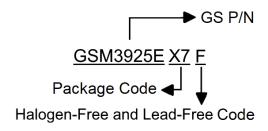
These devices are particularly suited for low voltage power management, such as smart phone and notebook computer, and low in-line power loss are needed in commercial industrial surface mount applications.


#### **Features**


- $\begin{array}{lll} & -30 \text{V}/\text{-}0.27 \text{A}, \; R_{\text{DS(ON)}} = 2500 \text{m} \Omega @ \text{V}_{\text{GS}} = \text{-}4.5 \text{V} \\ & \quad R_{\text{DS(ON)}} = 2900 \text{m} \Omega @ \text{V}_{\text{GS}} = \text{-}2.5 \text{V} \\ & \quad R_{\text{DS(ON)}} = 5000 \text{m} \Omega @ \text{V}_{\text{GS}} = \text{-}1.8 \text{V} \end{array}$
- Low-Voltage Operation
- High-Speed Circuits
- ESD Protection
- SOT-563 package design

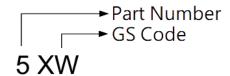
#### **Applications**

- Drivers : Relays, Solenoids, Lamps, Hammers
- Battery Operated Systems
- Power Supply Converter Circuits
- Load/Power Switching Smart Phones, Pagers


#### **Packages & Pin Assignments**








# **Ordering Information**



| Part Number | Package | Quantity Reel |
|-------------|---------|---------------|
| GSM3925EX7F | SOT-563 | 3000 PCS      |

## **Marking Information**



#### **Absolute Maximum Ratings**

(T<sub>A</sub>=25°C unless otherwise noted)

| Symbol                    | Parameter                                       | Typical              | Unit        |      |  |
|---------------------------|-------------------------------------------------|----------------------|-------------|------|--|
| V <sub>DSS</sub>          | Drain-Source Voltage                            |                      | -30         | V    |  |
| V <sub>GSS</sub>          | Gate-Source Voltage                             |                      | ±10         | V    |  |
| I <sub>D</sub>            | Continuous Drain Current(T <sub>J</sub> =150°C) | T <sub>A</sub> =25°C | -0.27       |      |  |
|                           |                                                 | T <sub>A</sub> =70°C | -0.22       | А    |  |
| I <sub>DM</sub>           | Pulsed Drain Current                            |                      | -1.1        | Α    |  |
| P <sub>D</sub> Power Diss | 5 5                                             | T <sub>A</sub> =25°C | 0.25        | W    |  |
|                           | Power Dissipation                               | T <sub>A</sub> =70°C | 0.16        |      |  |
| $R_{\theta JA}$           | Thermal Resistance Junction to ambient          |                      | 500         | °C/W |  |
| TJ                        | Operating Junction Temperature Range            |                      | -55 to +150 | °C   |  |
| Tstg                      | Storage Temperature Range                       |                      | -55 to +150 | °C   |  |

Note1. Device mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.



### **Electrical Characteristics**

(T<sub>A</sub>=25°C unless otherwise noted)

| Symbol               | Parameter                         | Conditions                                                                | Min  | Тур  | Max  | Unit |  |
|----------------------|-----------------------------------|---------------------------------------------------------------------------|------|------|------|------|--|
|                      |                                   | Static                                                                    |      |      |      |      |  |
| V <sub>(BR)DSS</sub> | Drain-Source Breakdown<br>Voltage | V <sub>GS</sub> =0V, I <sub>D</sub> =-250uA                               | -30  |      |      | V    |  |
| $V_{GS(th)}$         | Gate Threshold Voltage            | V <sub>DS</sub> =V <sub>GS</sub> , I <sub>D</sub> =-250uA                 | -0.4 |      | -1.0 |      |  |
| Igss                 | Gate Leakage Current              | V <sub>DS</sub> =0V, V <sub>GS</sub> =±8V                                 |      |      | ±10  | uA   |  |
| I <sub>DSS</sub>     | Zero Gate Voltage Drain Current   | V <sub>DS</sub> =-24V, V <sub>GS</sub> =0V                                |      |      | -1   | uA   |  |
|                      | Drain-Source On-Resistance        | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-0.5A                             |      | 1.6  | 2.5  |      |  |
| $R_{\text{DS(on)}}$  |                                   | V <sub>GS</sub> =-2.5V, I <sub>D</sub> =-0.2A                             |      | 2.0  | 2.9  | Ω    |  |
|                      |                                   | V <sub>GS</sub> =-1.8V, I <sub>D</sub> =-0.1A                             |      | 2.6  | 5.0  |      |  |
| <b>g</b> FS          | Forward Transconductance          | V <sub>DS</sub> =-10V, I <sub>D</sub> =-0.25A                             |      | 530  |      | mS   |  |
| $V_{SD}$             | Diode Forward Voltage             | Is=-0.5A, V <sub>GS</sub> =0V                                             |      |      | -1.3 | V    |  |
|                      |                                   | Dynamic                                                                   |      |      |      |      |  |
| Qg                   | Total Gate Charge                 | V <sub>DS</sub> =-15V, V <sub>GS</sub> =-4.5V,<br>I <sub>D</sub> =-1A     |      | 1.0  |      | nC   |  |
| $Q_{gs}$             | Gate-Source Charge                | V <sub>DS</sub> =-15V, V <sub>GS</sub> =-8V,                              |      | 0.2  |      |      |  |
| $Q_{\text{gd}}$      | Gate-Drain Charge                 | I <sub>D</sub> =-1A                                                       |      | 0.1  |      |      |  |
| C <sub>iss</sub>     | Input Capacitance                 |                                                                           |      | 54   |      |      |  |
| Coss                 | Output Capacitance                | VDS=-15V, VGS=0V                                                          |      | 10.9 |      | pF   |  |
| $C_{rss}$            | Reverse Transfer Capacitance      | f=1MHz                                                                    |      | 5.8  |      |      |  |
| t <sub>d(on)</sub>   | Turn On Time                      |                                                                           |      | 3.8  |      |      |  |
| tr                   | Turn-On Time                      | V <sub>DD</sub> =-10V,                                                    |      | 11   |      | _    |  |
| $t_{d(off)}$         | T 0# Time                         | $R_L$ =47 $\Omega$ , $I_D$ =-0.2A<br>$V_{GEN}$ =-4.5V, $R_G$ =10 $\Omega$ |      | 45   |      | ns   |  |
| tf                   | Turn-Off Time                     |                                                                           |      | 20   |      |      |  |



#### **Typical Performance Characteristics**

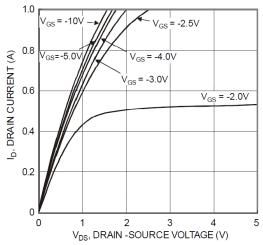



Fig. 1 Typical Output Characteristics

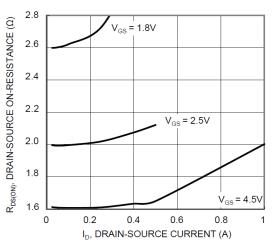



Fig. 3 Typical On-Resistance vs.  $I_{\text{D}}$  and  $V_{\text{GS}}$ 

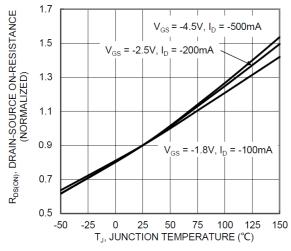



Fig. 5 On-Resistance Variation with T<sub>J</sub>

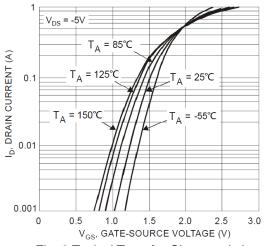



Fig. 2 Typical Transfer Characteristics

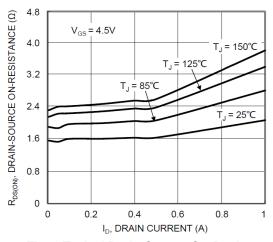



Fig. 4 Typical Drain-Source On-Resistance vs.  $I_D$  and  $T_J$ 

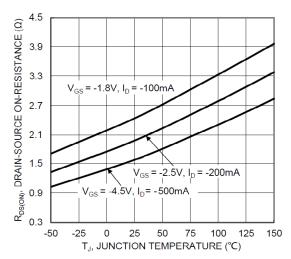



Fig. 6 On-Resistance Variation with T<sub>J</sub>



### **Typical Performance Characteristics (continue)**

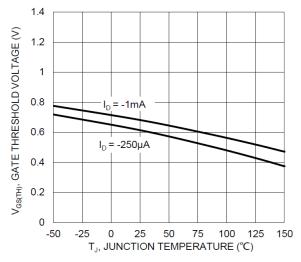



Fig. 7 Gate Threshold Variation vs. TA

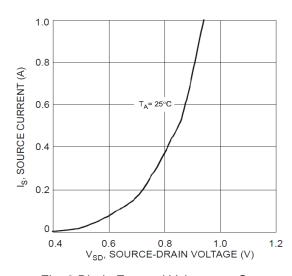



Fig. 8 Diode Forward Voltage vs. Current

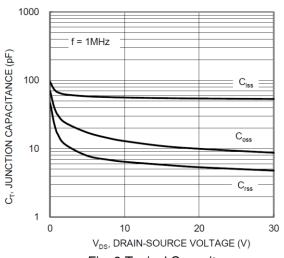



Fig. 9 Typical Capacitance

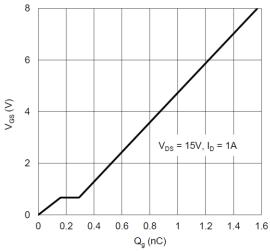



Fig. 10 Gate Charge

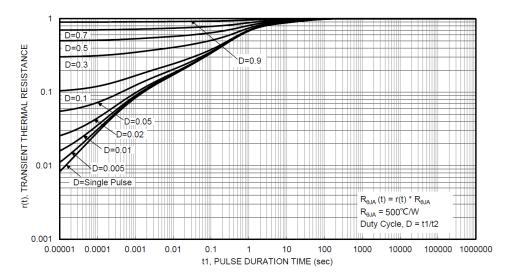
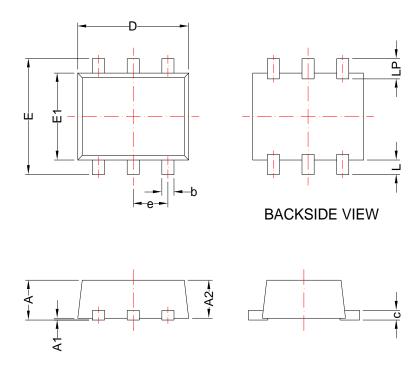




Fig. 11 Transient Thermal Response



## **Package Dimension**

# **SOT-563**



DIMENSION D AND E1 DO NOT INCLUDE MOLD FLASH, TIE BAR BURRS  $^{,}$  GATE BURRS  $^{,}$  AND INTERLEAD FLASH, NOT INCLUDING ANY MISMATCH BETWEEN THE TOP AND BOTTOM OF THE PLASTIC BODY

|            | Dimensions         |        |       |       |  |
|------------|--------------------|--------|-------|-------|--|
| Cumbal     | Millim             | neters | Inc   | hes   |  |
| Symbol     | Min                | Max    | Min   | Max   |  |
| Α          | 0.45               | 0.65   | 0.018 | 0.026 |  |
| <b>A</b> 1 | 0.00               | 0.10   | 0.000 | 0.004 |  |
| A2         | 0.45               | 0.60   | 0.018 | 0.024 |  |
| b          | 0.15               | 0.30   | 0.006 | 0.012 |  |
| С          | 0.07               | 0.20   | 0.003 | 0.008 |  |
| D          | 1.50               | 1.70   | 0.059 | 0.067 |  |
| Е          | 1.50               | 1.70   | 0.059 | 0.067 |  |
| E1         | 1.10               | 1.30   | 0.043 | 0.051 |  |
| е          | 0.50 BSC 0.020 BSC |        | BSC   |       |  |
| L          | 0.10               | 0.30   | 0.004 | 0.012 |  |
| LP         | 0.16               | 0.4    | 0.006 | 0.016 |  |



#### NOTICE

- Globaltech Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all Globaltech Semiconductor products described or contained herein. Globaltech Semiconductor products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Globaltech Semiconductor makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- Information furnished is believed to be accurate and reliable. However Globaltech Semiconductor assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Globaltech Semiconductor. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information without express written approval of Globaltech Semiconductor.

#### **CONTACT US**

|          | GS Headquarter                                                                       |  |  |
|----------|--------------------------------------------------------------------------------------|--|--|
|          | 4F.,No.43-1,Lane11,Sec.6,Minquan E.Rd Neihu District Taipei City 114, Taiwan (R.O.C) |  |  |
| 6        | 886-2-2657-9980                                                                      |  |  |
| Q        | 886-2-2657-3630                                                                      |  |  |
| <b>@</b> | sales_twn@gs-power.com                                                               |  |  |

|    | RD Division                          |  |  |
|----|--------------------------------------|--|--|
| \\ | 824 Bolton Drive Milpitas. CA. 95035 |  |  |
| 6  | 1-408-457-0587                       |  |  |

